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Model 

In this paper we introduce a new formulat ion of the Darwin ap- 
prox imat ion of Maxwel i ' s  equat ions and discuss its domain  of appl i-  
cabil i ty. We describe our  f ini te e lement  imp lementa t ion  of this 
model ,  a l lowing the use of unstructured grids, and its coupl ing wi th  
a PIG method for the particles. © 1995 Academic Press, Inc. 

1. ~TRODUCTION 

Plasma behavior spans an enormous range of time and spatial 
scales. This is one reason why plasma are so challenging to 
model numerically. CoUisionless plasma are fully described by 
the Vlasov-Maxwell system of equations: 

Of+ v. Vxf+_q (E + v × B) .Vof=  0 
Ot m 

1 dE 
- c -5- 0--7 + V × B = / Z o J  

0 B  
- - + V × E = 0  
Ot 

V . E  = - -  p 
~0 

V - B = 0 .  

The Maxwell equations describe the generation and propagation 
of electromagnetic waves, while the Vlasov equation governs 
the evolution of charged particle distributions in the multi- 
dimensional particle phase space. These equations are coupled 
by defining the current and charge density as moments of the 
particle distributions. 

The Vlasov-Maxwell system can be directly simulated in a 
natural way by coupling the numerical integration of charged 
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particle orbits at each time step to the advance of the electromag- 
netic fields on a grid of points. By now this technique, called 
particle-in-cell simulation (PIC) is very mature, and several 
good texts exist describing many variations on the theme in 
great detail [2, 7]. 

Nevertheless, there still remain many situations in which 
plasma modeling is extremely difficult. One of these occurs 
when the overall time scale of interest is very long compared 
with fundamental time scales of the plasma. The time scales 
most difficult to resolve over extended periods are the electron 
plasma oscillation period, the transit time of light waves over 
short distances, and often, in high-current regimes, the electron 
gyro-period. 

Methods for dealing with temporal stiffness fall into two 
general categories: (1) implicit time differencing, which is 
equivalent to numerical time filtering, and (2) reduced physics 
models in which the governing equations are modified to elimi- 
nate the unwanted frequencies. Examples of the second ap- 
proach go back to the very origins of plasma simulation in 
which models were almost exclusively electrostatic with no 
magnetic effects whatsoever. 

An intriguing reduced physics model--the Darwin particle- 
in-cell formulation--was introduced by Nielson and Lewis in 
1976 [17]. This model, as described in detail in the next section, 
eliminates only the propagating light waves from the system, 
while retaining other slower time scale electromagnetic effects 
arising from the particle current sources. It has proved to be a 
mixed blessing over the years. Many authors have used the 
technique to great advantage, but have noted the difficulties 
sometimes encountered in its implementation [3, 12, 17]. These 
problems arise from modifications of the originally hyperbolic 
system of equations which make the resulting system elliptic. 
Thus boundary conditions must be carefully formulated in order 
to ensure the problem is well-posed. Some of the most violent 
numerical instabilities experienced in plasma computations are 
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associated with the naive implementation of the Darwin 
method. Recent interest has been shown in getting to the root 
of these problems. Several authors have written on the essential 
mathematical properties of the Darwin formulation [8, 18, 21 ]. 
There have also been significant advances in the efficiency of 
solving the Darwin field equations. Originally requiring many 
elliptic field solutions and numerous corrections, the technique 
has been recently streamlined to its bare essentials, realizing 
great savings in computation [4, 11]. 

An alternative to the Darwin formulation is time-implicit 
electromagnetics. Implicit electromagnetic simulations have 
successfully yielded good results in many applications. How- 
ever, the properties of implicit methods are more difficult to 
assess than for a reduced model such as the Darwin approxima- 
tion. In the Darwin model, the properties of the modified equa- 
tions are relatively insensitive to the time step, provided the 
particle orbits and certain length scales are well resolved by 
the grid. On the other hand, implicit simulations filter all modes 
to some degree--the effect of the filter being sensitive to the 
relation between the time step and the particular frequency 
being sampled. Therefore in some regimes, the Darwin method 
may be "cleaner" to analyze and interpret. 

Besides the stiffness problems encountered in plasma simula- 
tion, there is another aspect that has become an increasing 
challenge as interest in plasma technology applications has 
grown. Real plasma devices seldom fit the orderly regular grids 
on which plasma simulations were originally implemented 
years ago. A number of investigators have published promising 
new techniques transcribing plasma computations to more flex- 
ible meshes. These include curvilinear, but otherwise regular 
meshes [13, 19], as well as completely unstructured meshes 
[14, 1, 5, 15]. The techniques employed have included finite 
differences (in curvilinear coordinates) [ 13, 19], finite volumes 
[5, 15], and finite elements [14, 1]. These have so far been 
applied in fully electromagnetic as well as reduced physics 
models. 

In this paper we will bring together several advances to 
produce a state-of-the-art formulation of the Darwin model. 
Building on recent analyses of the Darwin system of equations, 
we will introduce a comprehensive statement of boundary con- 
ditions under which the problem may be considered well-posed. 
Using dispersion analysis we will examine the fundamental 
stability criteria for Darwin simulations. We will show precisely 
how the full electromagnetic dispersion relation is modified in 
the reduced model. A constrained, mixed variational, finite 
element formulation will be described which solves the Darwin 
field problem in the electric and magnetic field components on 
an unstructured finite element mesh. This permits the method 
to be used in virtually any geometry. Test problems will be 
presented which demonstrate the accuracy of the new formula- 
tion when compared against analytical benchmarks. Although 
described in two dimensions, the method is fully three dimen- 
sional. 

2. THE D A R W I N  M O D E L  

The Darwin approximation of Maxwell's equations is intro- 
duced to remove what is often the stiffest time scale in electro- 
magnetic simulations, namely the propagation time of light 
waves from zone to zone. This model eliminates electromag- 
netic waves, but keeps an important part of the physics, in 
particular the low frequency phenomena. 

The electric field E is decomposed into two parts, an irrota- 
tional part E~, which is curl free and a solenoidal part E~o, which 
is divergence free: 

E = Ei~ + E~o~ 

where 

V X E~ = 0, V.E~o~ = 0. 

Furthermore, as V x E~ = 0 we can write E~ = -VqS. 
Darwin's approximation consists in dropping the solenoidal 

part of the displacement current from Ampere's law: 

V x B = ~oJ + 1 0E~, 1 
c-  - ~ -  + c 2 /~t " 

Taking the curl of this equation, we obtain 

V X V x B = /xoV X J 

which is an elliptic equation for B. 
By dropping only the solenoidal part of the displacement 

current, charge conservation remains satisfied in the Darwin 
model. 

Taking the curl of Faraday's law yields an elliptic equation 
for Eso~, 

V x V x E = - ~ V x B .  
0t 

Lastly, V. E = p/eo gives us Poisson's equation for the electro- 
static potential, 

_ V 2 ~ -  P 
~0 

Instead of Maxwell's equations, which are hyperbolic, we 
now have three elliptic equations. Thus the Courant condition 
on stability no longer constrains the time step. In addition to 
imposing appropriate boundary conditions, we must also ensure 
that any solution will be consistent with the constraints 
V.Esol = 0 a n d V . B  = 0. 
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2.1. Applicabilit3., of the Darwin Model 

Many who have encountered the Darwin formulation have 
found it awkward to pin down the regime in which it is clearly 
advantageous over fully electromagnetic models, on the one 
hand, and over static descriptions (electrostatic or magne- 
tostatic), on the other. In an attempt to clarify the discussion, 
consider the following scaling argument: 

Confronted with a plasma physics problem, involving a de- 
vice of length L, where we are mostly interested in low fre- 
quency phenomena (typically phenomena involving ions) we 
scale Maxwell's equation in the following way: 

Let L be the characteristic length of the problem, ~- its charac- 
teristic time, e.g., the frequency in which we are interested. 

We then obtain the dimensionless form of Maxwell's equa- 
tions, 

q conducting 

~ a n o d e  
open 

FIG. 1. A hypothetical diode device with both open and conducting bound- 
aries. The anode and cathode surfaces (F0 are conducting while the waveguide 
inlet (F.,) is open. The bottom boundary is simply a symmetry boundary repre- 
senting the centerline of the axisymmetric diode. 

OE 
- e - - + V x B = J  

Ot 

aB 
e - - + V x E = O ,  

Ot 

where e = L/'cc. 
We can now Taylor expand E and B with respect to e: 

E = E0 + eE~ + • • • 

B = B0 + eB~ + . - . .  

It has been shown in special cases [8, 18] that the quasistatic 
approximation (time derivatives neglected) agrees with Max- 
well's equations up to first order; i.e., E0 and B0 are the same 
but E~ and B~ differ. And the Darwin model coincides with 
Maxwell's equations up to second order. This result can be 
extended to the general 3D case. 

Thus, for small e these approximations are justified. More- 
over, in some situations, especially in magnetized plasma, it 
is essential to keep the first-order term, which will support 
electromagnetic phenomena. These include Alfven waves, ion 
micro-instabilities, and others. As shown in Appendix A, mod- 
eling low frequency phenomena in a strongly magnetized 
plasma is a good fit to the Darwin model. 

Indeed, there is a particular regime in which the Darwin 
model fits well. Moreover, this regime is broadened consider- 
ably when further approximations are introduced to reduce the 
problem such as the use of fluid electrons. 

2.2. Boundary Conditions 

For some problems, as in our benchmarl~: test which assumes 
periodicity, the boundary conditions are not an issue. In this 
case, provided the different quantities average to zero, the prob- 
lem is well-posed. 

For bounded problems, in general, one must introduce an 
additional, nonphysical, boundary condition on E~ or E~,,~ to 
ensure that the decomposition of E is unique. 

Note that a vector field E of the form Vu, where V2u = 0, 
satisfies both V .E  = 0 and V x E = 0. Therefore the field 
can be regarded as either irrotational or solenoidal. The extra 
boundary condition is needed to uniquely categorize such a 
field. 

There are many different possibilities for these boundary 
conditions. A guideline for picking boundary conditions that 
is consistent with the asymptotics of the Darwin approximation 
is found in Degond and Raviart [8]. Applied strictly to conduct- 
ing boundaries, the method takes account of the u/c scaling 
of Maxwell's equations. Boundary conditions for the Darwin 
approximation are chosen so as to retain second-order accuracy 
in u/c. An alternative formulation, based on physical considera- 
tions related to surface charge, was also proposed by Weitzner 
and Lawson [21]. 

To make the discussion more concrete, consider the follow- 
ing example. Suppose we wish to model a device which is 
conducting on some subset of the boundary (F~) and "open" 
on (F2) as shown in Fig. 1. 

Appropriate boundary conditions for a fully electromagnetic 
simulation would be: 

E X n = 0  onF~ (2.1) 

( E - c B × n )  X n = 0  onF2. (2.2) 

The first condition simply states that an electric field tangent 
to the surface of the conductor cannot exist. The second is a 
free-wave boundary condition also called the "Silver- 
MUller" condition. 

Using Maxwell's equations, we can decouple the Silver- 
MUller boundary condition into conditions on the E and B 
fields, respectively: 
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1 OE 

c at 

1 OB 

c at 

- - - X n X n = ( V x E ) × n  (2.3) f B . n d o ' = 0  (2.13) 
J F2i 

_ i  X n x n = (V X B) x n -  ~oJ x n. (2.4) 
while the solenoidal electric field is obtained from 

Moreover, E X n = 0 on F~ implies, using Faraday's law, that 

a B  ~ f  B . n d o ' = 0  - n = 0  onFt;  a 
at r~ 

and, also, using Ampere's law, 

(V × B) × n =  p-0J × n on Ft. 

In the Darwin limit, we must have appropriate boundary condi- 
tions for each of the component fields E~o~ and E~,, even though 
this decomposition is completely artificial. Motivated in part 
by physical considerations and in part by the analysis of Degond 
and Raviart, we choose 

Eir r X n = 0 on Ft 

f t ,  E~ot" n do" = 0 

E~o l ' n=0  onF2. 

where F]i (F23, i = I ..... n, are piecewise smooth components 
of Fj (F2). These boundary conditions state that on conducting 
boundaries, the electric field will be normal to the surface and 
driven by Eso], while on open boundaries, electric fields will 
be tangential and driven by E~,. With the above conditions we 
can close the system of equations which becomes: 

For the scalar potential 

-Vz~b = P (2.5) 
~0 

~b = V/ on Fli (2.6) 

a 4 ~ _  - - -  g onF2. (2.7) 
an 

The magnetic field satisfies, supposing that B0 = 0, 

V x V x B =/ZoV x J (2.8) 

V .  B = 0 (2.9) 

(7 x B) x n = p-oJ x n on FI (2.10) 

B . n = 0  o n F i  (2.11)  

( V X B ) × n  / ~ 0 J x n + l a B x  = - - -  n × n  onF2 (2.12) 
c at 

1 V ~ = - / ~0J  (2.14)  V X V X Esol-~-~ 

V- E~ol = 0 (2.15) 

E~ol × n = 0 on F~ (2.16) 

f E~ot- n do- = (2.17) 0 

~ =  ~', onF~i (2.18) 

I 0Ei~ 
( V X E ~ o , ) X n -  X n X n  onF2 (2.19) 

c 0t 

E~ol. n = 0 on F2. (2.20) 

Note that to obtain (2.19), we have neglected the solenoidal 
part of the displacement current with respect to the irrotational 
part in (2.3). This is completely consistent with the approxima- 
tion to Ampere's law in the Darwin limit. It is interesting that 
condition (2.2), which is a statement about the fate of normally 
incident electromagnetic waves in the full set of Maxwell's 
equations, can still be applied in the Darwin limit in which 
no electromagnetic waves propagate. Nevertheless, this is a 
perfectly consistent way of obtaining open boundary conditions 
on the fields and, as we shall see, it works quite well. 

3. VARIATIONAL FORMULATION 

We now turn to the variational formulation of the model. 
This not only enables us to demonstrate that each system is 
well-posed, it also provides the essential framework for a finite 
element discretization. 

3.1. Poisson's Equation 

For the convenience of readers unfamiliar with variational 
formulations or finite elements, we shall carefully derive a 
variational formulation from system (2.5)-(2.7). The varia- 
tional form of Poisson's equation involves the straightforward 
application of the standard technique. Let ~b be a smooth test 
function. Multiplying Eq. (2.5) by ~ and integrating over 1~ 
yields 

then, using Green's theorem, 
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- f~v2cb~dx= f~vqb'Vtpdx- fr~-~n@do-, 

we obtain 

(3.1) role in absorbing numerical errors when discretized. Some au- 
thors also call this approach a penalty method. 

Thus with the addition of the Lagrange multiplier, (2.8) be- 
comes 

fnvqb'Vt]JdX- frO-z-~Ck Odo-: l  ( p,  dx. (3.2) 
o n  ~3 o d l l  

Boundary conditions are dealt with in two different ways: 

• (2.6) is called an essential boundary condition. For such 
boundary conditions the problem is brought back to vanishing 
boundary conditions by setting ~ = ~b - /3, where/3 is any 
function satisfying (2.6). Then we look for ~ in a function 
space where all functions vanish on FI. Practically, this means 
that the test functions have to vanish on this part of the bound- 
ary, which is enough to get a solution with the same property. 

• (2.7) is called a natural boundary condition. In (3.2) we 
simply need to replace aqb/an by its known value on the bound- 
ary to enforce boundary condition (2.7), 

Our data being time dependent, the variational formulation 
for our Poisson system at time t is then stated as 

Find dp(t) E Hi(O) such that 

fnV~P'V~bdx=l fnp~bdx+ fr2g~bdo" 

- fflVfl. V~bdx V~bEH,(I'~), 

(3.3) 

where H~(f~) = {~b E H~(12); ~b = 0 on F~}. 
Then, knowing ~, we have th = ~ + ft. We remind the 

reader that ~ E H~(~) simply means that ~b, as well as all its 
spatial derivatives, are square integrable. 

3.2. The Constrained Problems 
The remaining systems are more difficult to formulate as 

they represent systems of vector and scalar fields with imposed 
constraints. This area has been intensively studied in recent 
years, particularly with regard to incompressible hydrodynamic 
flow. Mixed variational formulations, i.e., those in which differ- 
ent quantities live in different, but compatible, Sobolev spaces, 
have been used extensively, for example, by Girault and Raviart 
[10]. More recently Assous et al. [1] have used Lagrange multi- 
pliers with a mixed finite element technique to enforce charge 
conservation in a fully electromagnetic formulation. 

In the present context, we must enforce the V. B = 0 con- 
straint in the solution for B. This is done by explicitly adding 
a Lagrange multiplier p which has the trivial solution (i.e., 
vanishes) in the continuum limit, but which will play a vital 

V x V x B - Vp =/ZoV x J. (3.4) 

Now let C be a smooth function and take the dot product of 
(3.4) with C: 

f ~ V × V X B . C d x - f  Vp. Cdx 

= / z o f a V X J . C d x .  
(3.5) 

Using a Green formula we get 

f V X V X B . C d x = f  ( V X B ) . ( V × C ) d x  

- fr ((V X B) X n)-C do-. 

Replacing the boundary term using (2.10) and (2.12) yields 

f VxvxB.Cdx=f (V X B).(V x C)dx 

-/x0 fr (J x n). C do- (3.6) 

r2~B X n  X n ' C .  

We can transform the right-hand side using again Green's 
formula: 

fa (V x J) .Cdx = f~J . (V x C) dx 

- f r  J × n. C do-. 

(3.7) 

The remaining term in (3.5) is transformed using another 
Green's formula: 

fn Vp.C dx = - f.pVCdx + frPC.ndo-. (3.8) 

For the boundary term we will impose C. n = 0 on F~ which 
will lead to (2.11) and we also assume that p = 0 on F2. 

Now, replacing all the terms in (3.5) using (3.6), (3.7), and 
(3.8) yields 



286 SONNENDRUCKER, AMBROSIANO, AND BRANDON 

fn (V X B).(V X C) dx + fn p V . C d x  

+ d f (Bxn).(CXn)do-=tzofnJ.(Vx C)dx. 
dt r: 

Multiplying (2.9) by a scalar test function q yields 

(3.9) 

V x C = 0 ,  V.C = p ,  

C . n  = 0---~= 0 o n G .  
On 

Hence C is in H2(~'~). Furthermore, V-B = 0 from (3.14). 
Since V × C = 0, V. C = p, and C × n = 0 on F2, (3.1 I) yields 

fn (V-B)q dx = 0. (3.10) f n p2 dx = 0 

In order to handle the essential boundary conditions, we shall 
look for a solution in the space 

f 
H2(12) = ( C  E H(curl, f~) f-1 H(div, 1)); C x n E L2(F2), 

C - n = 0  onr,,fr2, C-ndtr=0}. 
One additional modification is needed to accommodate the 
numerical method which is described in detail below. We re- 
quire the matrix associated to B in (3.9) to be invertible, which 
is not the case as (3.9) stands, for the kernel of the bilinear 
form fn V x B. V X C dx contains all the gradients and thus 
is not reduced to 0. However, since (3. I0) implies that V. B = 
0, we may simply add the term fn V. BV-C dx to the left- 
hand side of (3.9), which will give us a bilinear form with a 
vanishing kernel on Hz(f~) and thus numerically an invertible 
matrix. This done, we finally obtain the variational statement 
for B: 

Find (B(t), p(t)) E H2(~'). ) × L2(~'~) such that 

f n ( v  x B) . (V x C) dx + fn V.BV.Cdx 
l d  +c fr(B×n).(Cxn)do-+ fopV Cdx 

= / z o f f l J . ( V  X C)dx VC E H2(~-~ ) (3.11) 

f (V. B)q dx = 0 Vq E/-a(~).  (3.14) 
f l  

As we mentioned earlier, it is easy to show from (3.11) that p 
vanishes in the continuum formulation. 

Let ~: be the solution of 

from which it follows that p = 0. 
The system for Eso~ is completely analogous to the system 

for B. We therefore simply write down the variational form 
without rederiving it here: 

Find (E~oj(t), ~(t)) E H3(~) × M(~) such that 

fn (V x Eso0- (V x F) dx + fn V. E~o,V • F dx 

1 +Tf  VFdx 
= - ofoJ.rdx + feF.ndo- 

~ a-~ fr2 (E,. X n)" (F X n) do- 
VF E H3(~) 

fn (V. Eso0 ~bdx = 0 V~b E M(I)), 

(3.13) 

(3.14) 

where H3(~"~ ) --- {F E H(fL curl) fq H(~, div)" F x n = 0 on 
= F.  n do- = 0} and M(f~) = {( E L-~(12) : r l ,  F . n  0 on r2, fr,,, 

f n ( X i d x  = O , i =  1 .. . . .  n}. 
The set {Xi}i=l ..... is defined by 

WXi = 0 

Xi=fiU on Fit 

O___X = 0 on F2, 
On 

where n is the number of continuously connected smooth seg- 
ments of F~. The well-posedness of the problems (3.11)-(3.12) 
and (3.13)-(3.14) follows from the ellipticity of the bilinear 
forms in the chosen function spaces. The proof is based on 
classical inf-sup theory that can be found for example in Girault 
and Raviart [10]. 

V2~ = p 

0.__~=0 onF,  
3n 

= 0 on r2. 

Now take C = V¢. Then C satisfies 

4. SPATIAL DISCRETIZATION OF THE 
FIELD EQUATIONS 

At each time step, we are required to solve two different 
kinds of problems: a traditional Poisson problem (3.3) and 
two constrained problems (3.11 )-(3.12) and (3.13)- (3.14). The 
latter will require compatible finite element spaces to be well- 
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To discretize (3.3), we introduce a finite dimensional sub- 
space of  H~(f)), 

H,, = {qS,, E C-~(~)); VTh E ~'h, 6,,.X~ E P,, ~b/, = 0 on F,}, 

where P~ is the set of polynomials of degree one. 
For any ¢;b E Hh we have 

n h 

qS(x, t) = ~ ch'(t)N'(x), 
i=1 

(4.1) 

FIG.  2. The Tay lo r -Hood  element. The electric and magnetic field vectors 

are defined at the vertices of each of the finer triangles, while the Lagrange 
multipliers are known only at the vertices of the coarser ones. The differences 

in the degrees of freedom are necessary to ensure compatibil i ty of the respective 

function spaces. 

where {N'].~=,....,~:,,,~r, is a basis of  Hi,. 
N~ is the function of Hh satisfying N~(a3 = 1 and N~(aj) = 0 

for i ~ j. To enforce N~(x) = 0 on 1-', we require that N~(a3 = 
0 if ai E El. 

The finite dimensional version of (3.3) now becomes 
Find qb(t) E HI, such that 

posed and convergent. Such problems have been well studied 
in hydrodynamics and several possible finite elements are given 
in Girault and Raviart [10]. We must bear in mind that (3.3) 
is to be solved on the same grid. Therefore, following Assous 
et al. [1], we choose a modified version of the Taylor -Hood 
element (Fig. 2). 

To build a suitable grid, a mesh generator first constructs a 
slightly coarser mesh of  triangles than desired for resolving the 
vector fields. Then each triangle is subdivided into four smaller 
ones by joining the midpoints of  each side to produce the 
degrees of  freedom required for the Taylor -Hood elements. In 
the Taylor -Hood element the scalar quantities are traditionally 
linear on each element and so have three degrees of  freedom 
which are the values at the vertices. The vector quantities are 
quadratic and thus have six degrees of  freedom which are the 
values at the vertices and the midpoints. Several authors (e.g., 
Assous et al. [1]) have gotten good results with a simpler 
representation where the vectors are linear on the fine grid, 
leading to the same degrees of  freedom. 

To have the same resolution in E~ as in E~ot, Poisson's 
equation (3.3) will be solved on the finer grid, with linear shape 
functions on each of  the small triangles. As for the mixed 
problems, the vector fields will be evaluated at the vertices 
of  the small triangles assuming linear sub-elements while the 
Lagrange multipliers will be evaluated only at the vertices of  
the larger triangles treating them as linear elements as well. It 
follows that the solution will be less precise for the Lagrange 
multipliers, but this is not a concern, since they are only needed 
to enforce the constraints. 

We introduce the following notation: 
Let n~, be the number of  vertices of  the finer grid and nzh be 

the number of  vertices of  the coarser grid. Let ~'h be the fine 
triangulation composed of  triangles Th and ~-~, be the coarse 
triangulation composed of  triangles T2h. And finally, let {a~}, 
i = 1 .. . . .  nh, be the vertices of  the small triangles. 

f vr,..Vtphdx=lf, phg,,,dx 

+ fr  gh~hdo" Vqt hEHh. 
2 

(4.2) 

Using (4.1) for the different functions and replacing ~0h by Nj 
for 1 -< j --< nh we get 

n h 

E ~bif VNi. VN'dx 
i= I 11 

II h 

+ Eg' f  Ni'N'do'. 
i= I •'2 

1 ~"h f = -- ~ # N i" NJ dx 
EO. = fl 

(4.3) 

Now let K be the nh × n~, matrix whose i, j term is fn  VN~" V 
N j dx. Let M be the nh × nh matrix whose i, j term is fn  Ni' 
N s dx, and let M r: be the nh × m, matrix whose i, j term is 
fr,. Ni" Nj do'. 

Then, in matrix form, (4.3) can be written 

Kqbh = 1 Mph + Mr'-gl,. (4.4) 
~o 

Solving (4.4) for ¢kl, using a classical ICCG solver will give 
the values of  the electrostatic potential at the vertices of  the 
triangulation ~-i,. 

The finite element formulation of  (3.11)-(3.12) and (3.13)- 
(3.14) can be derived in a similar way. A short description an 
the final formulations can be found in Appendix B. In matrix 
form, we get two linear systems of the same structure which is 

Ku + L'p = b 

Lu = O. 
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K is a square matrix of  side 3m, and L is a nh × n_,h rectangular 
matrix and so is not invertible. Therefore the system is com- 
pletely coupled. 

Multiplying the first equation by L K  -~ and using Lu = 0 
yields 

LK -I L'p = L K  tb (4.5) 

which is independent of u. To solve (4.5) we use a nested 
iteration technique. In particular, a gradient method is used to 
solve for p, with iterates of u and p being computed at each 
step. To solve for these, we use a conjugate gradient method 
on the linear system involving the matrix K. This combination 
is called the Uzawa method, and the full algorithm is described 
in [9]. 

At each step we need to solve a linear system involving the 
matrix K, which is done with another conjugate gradient. This 
could be very costly if the number of  outer iterations were 
large. This is not the case for our problems. For B we only 
need the outer iterations to clean out divergence errors, which 
is generally done in at most a couple of  iterations, and so 
this method competes fairly well with a traditional Poisson 
correction. And even for E~o], where we need to extract the 
divergence free part of a normally nonsolenoidal solution, we 
take advantage of  the fact that L K  -~ L 7 is a much smaller matrix 
than K and that we do not need high precision on p. 

The scheme described above is fully applicable in three 
dimensions. In our present two-dimensional implementation 
we have built the code to accommodate either rectangular or 
axisymmetric coordinates. 

5. COUPLING THE PARTICLES AND FIELDS 

The following section describes the way in which particles 
are advanced and coupled with the field solutions. 

5.1. Particle hztegration 

The Darwin model of  a collisionless plasma couples the field 
equations to particle motion at each time step. Each macroparti- 
cle, represented by its position and momentum, obeys 

dX x 
- - = V  k 
dt 

dpk 
d--T - qk(E + v × B), 

where Pk = ykmkvk and ",/~ = (1 + p]/m~c2) I/2. 

Here we have chosen the full relativistic form of the Lorenz 
force equation for robustness. 

Numerically, the equation of  motion 

d%mkvk 
dt = qk(E + vk × B) 

node i 

FIG.  3. The value of the linear element basis function for a given node 

is positive inside the element and becomes negative as one crosses the opposite 

triangle edge. This property can be used to judge whether a particle is inside 
or outside a particular element. 

in integrated using a standard Boris push which is comprised 
of  three steps: (I) an initial half acceleration from the electric 
field; (2) a rotation due to the magnetic field; and (3) a final 
half electric field acceleration. 

The position is then advanced using 

d ×  k 
- - = V k .  
dt 

One of  the problems encountered when one abandons a regular, 
uniform grid for an irregular one is locating the particles. This 
is trivial on the regular mesh with its constant spacing, but not 
so on an unstructured mesh. To assign a particle to a particular 
element, in order to allocate its charge or current, requires a 
suitable algorithm for particle tracking. A method proposed in 
[14], makes use of  the barycentric coordinates of  a particle 
with respect to a triangle. These coordinates are closely related 
to the linear element basis functions for triangles. 

Consider a triangle 7"1,. The barycentric coordinates of  a parti- 
cle with respect to a~, a_,, a3, the vertices of  Th, are the same 
as the linear element basis functions N~, N~, N3 evaluated at 
the particle location (see Fig. 3); i.e., 

N~(ai) = 1, Ni(a~) = 0 for i ¢-j. 

The values of  these functions at the particle coordinates can 
help to determine its location relative to a given element. For 
example, if upon evaluating N~ at particle position xk we find 
Nt(xk) > 0, it means that a~ and xk are on the same side of  the 
line (a2a3), whereas N~(xk) < 0 means that a~ and x~ are not on 
the same side of  the line. Thus xk is inside the triangle Th if 
and only if N~(xk) > 0, N2(x~) > 0, and N3(xk) > 0. When this 
test fails, our best guess is then to try the triangle on the side 
corresponding to the most negative weight. Searching elements 
successively in this manner usually locates the particle in a few 
steps. This is especially so for a particle code in which, for the 
sake of  accuracy, the particles are not allowed to travel much 
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more than one zone per time step. In such cases all the particles 
are found in about three passes. Although we have described 
the tracking algorithm in terms of triangles, the same technique 
can be applied to quads in 2D and to tetrahedra and hexadedra 
(brick elements) in 3D using the appropriate linear functions. 
A word of caution is in order, however. It is possible, near 
very irregular concave boundaries, for this method to fail. In 
this case it would repeatedly point to a location outside the 
grid as the next guess [R. L6hner, private communication]. 
However, there are more conservative (and more costly) search- 
ing algorithms that can easily be employed as a fallback to 
make the overall method robust. 

5.2. Charge and Current Assignment 

In this section we describe the charge and current deposition 
prescriptions that will yield source terms for the Darwin electro- 
magnetic fields. In the continuum, the number, charge, and 
current densities are linked to the distribution function.~ of a 
charged particle species s by 

,,(x, t) = Z f , / ; (x ,  v, t) av 

= q v 

J(x, t) = ~ v, t)v av, 
s 

where the sum on k is taken over all species and q.~ is the charge. 
In PIC simulations, these functions are approximated by 

apportioning discrete particle charges and currents to the grid 
using particle shape functions. These are often taken to be the 
same as the basis or shape functions on the grid (see Birdsall 
and Langdon [2]). In our case we will weight the particles to the 
triangle vertices using the linear basis functions for triangular 
elements N ~, 

1 
Pi(t) = ~ fn p(x, t)Ni(x) dx 

1 
Vi qkNi(x(t)) 

1 fn  J(x, t)Ni(x) dx Ji(t) = 

1 
V~ q~vkN~(x(t)) 

(6.2) 

(6.3) 

where V~ is the volume associated to the node i, i.e., V~ = fn  
Ni(x) dx. 

The source for E,o~ acccording to (2.13) is J, but as we will 
see in the next section, one must carefully evaluate it to avoid 
instability. Deferring our discussion of  numerical stability for 

now, we simply follow Nielson and Lewis [17] and take the 
time derivative of the discrete quantities: 

dt Vi q~ Ni(xk) + vk (6.4) 

We then substitute 

dv_.2~ = qk (E + vk × B) 
dt m 

and 

dxk 
- - =  v k dt 

to obtain 

--=dJZdt l~q~(~(E+vkXB)NZ(xk)+vk(vk'VNZ(xk)))Vz k \m 

This expression, which is a source for E~o~, also contains E~o~ 
in the term involving E. Thus we will take this term over to 
the left to become part of the elliptic operator. 

We now write down the complete time advance algorithm: 
Starting with x", v "-m, E", and B", the particle push yields v "-m 
and x ''+~. Strictly speaking we need J"+~, which, as (6.3) shows, 
makes use of v ''+~ and x "+~. Therefore an extrapolation of the 
velocity is necessary. We have tried three different ways of 
time-centering the current source: 

• Use the lagged velocities: v ''+' = v "-~/2 

• A linear projection: v "+l = ~-v "+1/2 - ~-v "-1/2 

• Do another Boris push using the same fields. 

Even though the third method looks like the most accurate one, 
we have not seen any sensitivities in the results to our choice 
of  time-centering methods. This may come from the fact that 
v "+~ is just used to predict j,,+t, but is not used to advance the 
particle velocities. At any rate, once v "+~ is computed using 
any of  the above methods, everything we need to compute the 
sources p"+~, J"÷', and J"+' is available. Finally, (~n+l B,,+~, and 
El, + i ~o~ are computed using these source terms. 

6. NUMERICAL RESULTS 

6.1. The Time Differencing hTstabili~ 

The Darwin model for electromagnetic simulation has had 
a reputation in the literature for being ill-behaved. We suspect 
that this is because the problem is essentially a simultaneous 
system of elliptic field equations with nontrivial boundary con- 
ditions coupled nonlinearly to time-dependent sources. Thus 
there are lots of  ways, when choosing a time-advance scheme, 
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to choose badly. Several authors, including Nielson and Lewis, 
have noted that violent instabilities can develop from innocent 
choices for the time-marching scheme. The method we have 
chosen follows the traditional strategy for solving the Darwin 
system. Here we take a closer look at the stability problem and 
conclude that it is the only robust choice. We will focus on the 
equation involving E~o~: 

=, per iod ic  ~, 

° ° ° ~  
4 P 

64 cells 

FIG. 4. The triangulation for the periodic test cases used in evaluating the 
dispersion relations. 

v x v x E~o,- l_; Vb = - ~0J. 
C" 

The source term is J. The question is whether it is possible to 
use backward time differencing involving the last two values 
of J to obtain J. Or even better, could we use Faraday's law 
and write 

B i t  + I _ _  B i t  

V X ~'"+' - -  ~,ol (6.1) 
At 

and use B" and B "+~ which would have already been computed 
and therefore known? This last scheme would have the consid- 
erable advantage of having a solenoidal fight-hand side, which 
would in turn dramatically reduce the number of iterations 
needed to converge to a solution. Thus, we would like to investi- 
gate under what conditions this proposed scheme would be 
stable. A cold plasma analysis of our scheme similar to what 
was done by Nielson and Lewis [ 17] yields the following condi- 
tion for stability: 

densities we used. We loaded 6400 electrons uniformly on the 
grid, and an equal charge of opposite sign was added to repre- 
sent the ions, so that the plasma was neutral. To generate a 
perturbation we set the electrons drifting at l m/s. Thus there 
was essentially no electrostatic field, but rather a small per- 
turbed magnetic field and a small solenoidal electric field. 

Several densities were used ranging from 10 ~2 to 10~Sm -3. 
Up to 10 ~4 m -3 the simulation remained stable, generating a 
small, but stable solenoidal electric field which remained so 
over the 300 time steps of the computation. At a density of 
10~Sm -3, the electric field as well as the magnetic field began 
to increase dramatically, showing a very violent instability and 
destroying the simulation after fewer than 10 time steps. The 
same phenomenon was observed for higher densities, with the 
blowup coming even earlier. We noted that decreasing the time 
step did not help, confirming that the stability is independent 
of time step in this regime. 

6.2. Numerical Tests o f  the Dispersion Relation in a Doubly 
Periodic Domain 

c2k 2 -  

We have explored other explicit schemes and found they yield 
similar conditions differing by a multiplicative constant of order 
one. Thus, we take as our stability condition k >- %tic. Now 
the smallest k seen by a mesh is r;/L, where L is the length of 
the computational domain. Practically speaking, this means that 
if c/OJpe >-- L/1r the simulation should be stable. Therefore the 
straightforward time-differencing can be used only for problems 
of length at most of the order of the collisionless skin depth. 
But, as the Darwin dispersion analysis (see Appendix A) shows, 
most interesting Darwin problems lie in a regime where the 
problem length is several times the collisionless skin depth. 
Thus abandoning simple time-differencing strategies is un- 
avoidable for most problems and one must determine the source 
term for E,o~ in other ways. However, let us point out again 
that there is a stable regime as the following test shows us. 

In order to verify the stability constraint discussed above, 
we have performed the following experiment: 

The mesh we used is a square lm in length with 648 elements 
of equal size. Numerically OJpe ~ 57 X/~n and L = lm. So the 
algorithm should be stable for n --< 2.7 × 1014m -3. We used a 
time step of 10-13S so  that oJpeAt < 2 was satisfied for all the 

To validate the code without introducing the additional 
complexity of boundary conditions, we consider a doubly peri- 
odic 2D computational domain (see Fig. 4). 

A few electrostatic runs were performed to confirm that the 
code yielded the correct frequencies for both cold and warm 
plasma oscillations. Energy conservation was very good, as 
well--better than 3% over 16,000 time steps for OJp~At ~ 0.3. 

To validate the Darwin field solver, we attempted to repro- 
duce numerically the dispersion relations we computed analyti- 
cally in Appendix A for a cold plasma. The parameters for 
these runs were as follows: The fine grid consisted of 4 × 64 
squares of length lmm on a side divided into two right triangles. 
Thus the computational domain was 4mm wide and 64 mm 
long. We also had 

ni = ne = 10tSm -3 

me = 9.1 × l 0  -31 kg 

mi = 4me 

B0 = 0.38 T. 

We started these runs by superposing four modes and letting 
the waves propagate. A spatial FFT was used to separate the 
different modes to obtain a time history. We ran the problem 
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FIG. 5. Dispersion curves for modes propagating perpendicular to the 
magnetic field direction. The solid lines are analytic results for the full set of 
Maxwell's equations and for the Darwin approximation. The code results are 
marked with asterisks. 

The geometry of our device was chosen to be complex 
enough to necessitate an unstructured grid. It is reminiscent of 
a linear accelerator module, although it does not represent any 
existing one. 

In this simulation, a driving voltage V = Vdl + sin cot), 
with Vt~ = 0.5 kV and co = 4 10%-~ was applied to the conducting 
boundaries. Electrons were injected with an energy of 10 eV, 
and a constant axial magnetic field B0 = 0.5 T (=5 kG) was 
applied to avoid an expansion of the beam. 

In order to make the Darwin model more interesting, we 
sought a regime where c3x/c ~ ~%/v, thus making the usual 
electromagnetic time steps, restricted by the Courant condi- 
tion, costly. 

We chose At = 2.5 X 10 -~° s so that a particle could not 
travel much more than one grid cell per time step. There is no 
way in a PIC code to overcome this limitation if physically 
meaningful results are to be expected. We ran the code over 
500 time steps, corresponding to many device transit times 
for the particles. During the run, we encountered no stability 
problems and obtained reasonable results (plausible field mag- 
nitudes, currents, etc.) for fields and sources. A snaphot of the 
simulation is shown in Figs. 7 and 8. 

for 2048 time steps. A FFT on the sampled time series was 
used to obtain the frequencies associated with each mode. The 
results shown in Figs. 5 and 6, were very good. The points lie 
almost exactly on the analytical curves corresponding to the 
Darwin equations. 

6.3. Numerical Tests hzvolving a Bounded Domain 

In order to exercise the axisymmetric version of  our code 
and to test its robustness in complex bounded geometries we 
designed a hypothetical Darwin problem as follows: 

. . . . . . . . .  I . . . . . . . . .  I . . . . . . . . .  I . . . . . . . . .  I . . . . . . . . .  I 

16 

12 

2 
o 
r - -  

8 x 
8 

Full Maxwell ~ 

Darwin / 

Darwin 

L . . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  i . . . . . . . . . . . . . . . . . .  

200 400 
k 

FIG. 6. Dispersion curves for modes propagating parallel to the mag- 
netic field. 

7. CONCLUSION 

The code we have developed is based on solid mathematics 
and the accumulated experience of many investigators who 
have explored this somewhat arcane variant on Maxwell 's equa- 
tions. We have attempted in this paper to synthesize several 
developments in the art of PIC simulation as applied to moder- 
ate-to-long time scale electromagnetic phenomena. We have 
formulated a PIC method based on the Darwin approximation 
that can be used on unstructured meshes. This removes many 
geometrical limitations and allows access to a host of problem 
domains related to real plasma devices. In doing so, we have 
also incorporated recent work in the mathematical foundations 
of  the Darwin approximation, especially as it affects the choice 
of  well-posed boundary conditions. Furthermore, the variational 
formulation applied here may be shown to be a good alternative 
to the streamlined methods introduced by Hewett et al. [4, 
11] to make implementations of  the Darwin schemes more 
affordable (see Appendix C). 

We have attempted to nail down, by means of the dispersion 
relations and dimensional analysis, the regime in which the 
Darwin approximation is likely to be most useful. This is some- 
thing which current practitioners have admitted is sometimes 
bewildering. We have benchmarked the code against a disper- 
sion analysis to show that the variational formulation is indeed 
correct and accurate. Finally, we presented a simple test prob- 
lem to show that the code was well-behaved in a complex 
geometry with both metallic and open boundaries. 

We believe that the Darwin approximation has a place in 
the repertoire of  plasma simulation because it represents a form 
of the full system that is reduced only by the loss of  propagating 
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charge density electrostatic potential 

longitudinal electric field radial electric field 

FIG. 7. The results of a bounded problem involving a hypothetical device reminiscent of an accelerator geometry. Clockwise, snapshots of the charge 
density, the electrostatic potential, the radial electric field and the longitudinal electric field. 

electromagnetic waves. Unlike implicit formulations, with their 
time step-dependent dispersion relations, the Darwin method 
is a clean representation of the Vlasov-Maxwell system in a low 
frequency regime that can be readily analyzed and understood. 
However, there are always limitations. In particular, eliminating 
the Courant condition on the field solution does not help stiff- 
ness associated with the plasma frequency. Nevertheless, there 
are straightforward electrostatic particle-implicit techniques 
that may be applied to alleviate this problem. 

Finally, we think this paper is valuable for another reason in 
that it is a good example of recent mixed-variational techniques 
applied to problems with local vector-field constraints. These 
methods are very powerful in their ability to bring finite element 
methods and, therefore, geometric flexibility into areas where 
they would not have been applied in the past. We have seen 
them applied to the full Maxwell equations with the work of 

Assous et  al. [1] and to the Darwin formulation here. We also 
expect them to be useful in MHD and in quasineutral hybrid 
formulations. Thus the whole field of plasma simulation could 
be opened to unstructured meshes allowing much greater flexi- 
bility in simulating real plasma devices. 

APPENDIX A: DISPERSION ANALYSIS OF THE DARWIN 
FIELD EQUATIONS 

In order to gain insight into the problem regime appropriate 
to the Darwin model, we performed a dispersion analysis com- 
paring the full electromagnetic equations, the Darwin equations, 
and the quasistatic equations. 

A dispersion relation can be computed for each of the differ- 
ent models. For simplicity, we have used the linearized fluid 
equations to represent the particles (e.g., see Stix [20]). Let 
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FIG. 8. The results of a bounded problem involving a hypothetical device reminiscent of an accelerator geometry. Clockwise, snapshots of the longitudinal 
solenoidal electric field, the radial solenoidal electric field and the azimuthal magnetic field. 

n = c k l o ~  be the refract ive index.  W e  introduce the fo l low-  
ing defini t ions:  

l (  ' co~i 
= ' 7  ~ -k  ce ~-~ 1 - o J a / o J -  

,8 = 1__ 
0o- 1 - oJ~-i/co-" 

1 ~ 
y = ---; (%~ + %~). 

O)" 

1 - 

+ ¢'°ce 097,,, 

1 - og~, , /oJ-]  

These  appear  in the express ion  for  the die lect r ic  tensor. Physi-  
cal ly  ,8 is a dielectr ic  constant ,  whi le  ot and "y are suscept ibi l i t ies .  
Wi thou t  loss  of  genera l i ty  we suppose  that we have a constant  
B0 a long the axis ~ and that the wave  vector  k = k sin 0 2 + 

k cos 0 L The monochromat ic  waves  are assumed to be of  the 
form e "k~-~''~. 
The d ispers ion relat ions may  be writ ten as fol lows:  

• For  the full Maxwel l  equations,  

tan-'0 = - ( 1  - y ) ( n  2 - 1 + oz + , 8 ) ( n  -~ - 1 + o~ - , 8 ) .  

(11-' - ( 1  - T ) ) ( ( 1  - c ~ ) n  -~ - ( ( 1  - oz)  -~ - / 3 2 ) ) ,  

• For  the Darwin  equations,  

tan2 0 _ - ( 1  - y ) ( n  2 + ot  + , 8 ) ( n  z + ot  - , 8 ) .  

(112 + y)((1 - ot)n 2 - ot z +/3., + o~)' 

• For  the quasistat ic  equat ions (i.e., static electr ic and mag-  
netic fields) we mere ly  have 
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tan2 0 = - ( 1  - y )  
l - o r  

n 2  = _ 0)~e q-  0)~i 

(0)  + 0 ) , ) ( 0 )  - 0),.3 

We now compare these dispersion relations in a few special 
cases. Consider Bllk (i.e., 0 = 0). 

• Plasma oscillations. This corresponds to y = 1 in the 
dispersion relation, that is, 

0)2 = 04 + G .  

All three field equations (full Maxwell ,  Darwin, and electro- 
static) support this wave exactly. 

• The R wave. In the Maxwell  dispersion relation this corres- 
ponds to n 2 = 1 - (a  - / 3 ) ,  that is, 

n z = 1 - 0)~ + 0)~/ 
( 0 )  - -  0)ce)(  (-0 "~ 0)ci) '  

provided the ions have only one positive charge, which we will 
assume, as well as n~ = n~, 0)pi ¢ 0)~, and 0)~ ~ 0 ) , .  

The corresponding wave in the Darwin approximation is 
n 2 = - ( a  - / 3 ) ,  that is, 

i,/2 = - -  0)pe "q- 0)pi 

(0)  - 0)c~1(0) + 0)~,1 

Since this wave is transverse electromagnetic it does not exist 
in the quasistatic approximation. 

Let Va = B / p V ~ 0  be the Alfven velocity, where p = min.i  

is the mass density of  the ions. In both the Darwin and the full 
Maxwell  cases, the refractive index n2(0)) has a minimum at 
0) = 0)J2 .  This minimum value is n 2 = 1 + 4(OJpe/0)~)2 2 for 
Maxwell  and n 2 = 4(0)~/0)~e) for Darwin. I f  0)p~ >> 0), (high 
density plasma or low B), this minimum is approximately the 
same for Darwin and Maxwell.  This is not true for 0)p~ ~ 0),. 

What  one finds from this comparison is that in the limit 
0)p~ >> 0)~ (whistler waves) the Darwin approximation is very 
good at all frequencies less than 0)~e- The entire low frequency 
branch is given with perfect accuracy by the Darwin approxima- 
tion. However,  when 0)pe ~ 0)ce Darwin is a good approximation 
only for 0) ~ 0), and for 0) close to 0),. 

The high frequency branch of  the R wave is completely 
damped out in the Darwin approximation. 

• The L wave. In the Maxwell  dispersion relation this corres- 
ponds to n 2 = 1 - (or + /3), that is, 

This wave is transverse electromagnetic and does not exist in 
the quasistatic approximation• 

For the L wave, the Darwin approximation recovers the low 
frequency branch (0) < 0)c3 very well in the limit as c2/V],, 

1. Again the high frequency branch does not exist. 
At very low frequencies (to ~ 0)~3 the ion cyclotron and 

electron cyclotron wave come together in one branch satisfying 

/,/2 - -  0)pi __ C 2 

both for Maxwell  and Darwin, assuming that c 2 1 v ]  ~ I, which 
is normally the case. This can also be written 

(.O2 9 2 =- k-v,~ 

which we recognize as the dispersion relation for Alfven waves• 
Next consider B_l_k (i.e., 0 = 1r/2). 

• The ordinary wave. The index of  refraction for the full 
Maxwell  equations is obtained by setting n 2 = 1 - % i.e., 

n-' = 1 - °%'-----A~2 
0)2" 

The same wave in the Darwin approximation is described by 
n 2 = - %  that is, 

/ /2 : 0)~e 

¢.0 2" 

This wave is not present in the quasistatic approximation. 
We note that n 2 is always negative for Darwin, meaning that 

the wave is always damped out. Thus the ordinary wave does 
not exist in the Darwin approximation• 

• The extraordinary wave. The Maxwell  equation limit cor- 
responds to (1 - a ) n  2 - ((1 - 002 - [32) = 0, that is, 

2 2 9 __ (.02pi O)ce(.Oci) n 2 = 1 - (0)?,e 4: 0)pi)(0) - -  0)~,e - -  

(0)2 _ 0 % ) ( 0 ~ 2  _ 0)~,) _ (0)~e + 0)~,) (0)2 _ 0 ) . 0 ) c , ) '  

In the Darwin approximation we have (1 - ot)n 2 - o? + 
/32 + a = 0 ,  that is, 

n 2 = 1 - 0)~e + co~i 

( 0 )  + 0)ce) (0)  - -  0)ci)" 

n2 = (rOpe + 0)~,)(0)2 _ 0)~e -- 0)~i-  0)ce0)~g) 

(co 2 - 0)~e)(0)  2 - -  0)~,) - -  (0)~e + 0)~,) (0)2 _ 0 ) . 0 ) c i ) '  

The corresponding wave in the Darwin approximation is n 2 = We also have something in the quasistatic approximation, 1 - 
- ( a  + fl), that is, ot = 0, that is, 
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to_, _ toni + toa,, 
- to~,./to- to;~/to- 1 - 

( 0 ) 2  ~ ~ , ~ ~ - to;.~)(to- - to~) - (to~,. + to~)(co- - to~to,.;) 

= (to~,,, + to;i)(to" - ~o~ - o ~ , -  o~,.,.to,.3, 

At high frequencies this corresponds to plasma oscillations, but 
at low frequencies to-" < 0, so it is damped away. 

We shall now take a closer look at the extraordinary wave 
in the full Maxwell equations and in the Darwin case. We note 
that a resonance is obtained for n 2 ~ + oo. 

Looking at the dispersion relations, we see that Maxwell and 
Darwin have the same resonance frequencies, which are the 
roots of  

((.~O 2 - -  O-I~.e)((.O 2 - -  (/.),2i) - -  ((-Dpe "q'- (.Opi)((3.) 2 - -  O)ceO.)ci ) = O. 

Keeping in mind that to~ ,~ to,,, and top~ "~ top,., and neglecting 
terms according, the equations can be written 

with the usual approximations, this becomes 

(-O~e 
to-' : 2 _  _ - ~ - 1 +  1 + 4  

to~ toT,./ / 

So for the Maxwell limit we have two cutoff frequencies, 
namely, 

to , . (  ( to_,\,/2\ 
to,, , ,=-~- - 1  + l+4~--~P, ~1 ] 

¢oa./ / 

to2M=-~- 1 + 1 + 4  . 

to" - + + G + to 0to-' 

+ to,,to,,(og,,, + to ,, + = 0. 

Let to~ = oJ~, + to,'-/+ to~e + toni. We have 

0)2 1 "~ "~ = r(to~, - (to~ - 4to,,toc~(to~,. + to~ + to,.,.to,.3)t/z), 

but toj, --> toce ~> toci, SO 

= "~ toT, ± to~, - 2to,to,.i _ ~ceto~i 
to~, / / / "  

Thus, we get two resonant frequencies 

Thus, it appears that in this case the Darwin approximation is 
very good for the whole lower hybrid branch as well as for 
frequencies close to the upper hybrid frequency. Here again, 
the high frequency branch is completely damped out. 

In summary, the Darwin approximation, as expected, de- 
scribes all the low frequency electromagnetic phenomena very 
accurately. However, such phenomena depend on the existence 
of  a strong magnetic field. This suggests that the Darwin approx- 
imation is made-to-order for strongly magnetized plasma, 
where the phenomena of interest are low-frequency electromag- 
netic plasma waves, particularly those near the lower hybrid 
branch. 

APPENDIX B: FINITE ELEMENT FORMULATIONS FOR 
(3.11)-(3.12) AND (3.13)-(3.14) 

and 

( // t o . :  _ to.to , _ 
to~, / /  

For the discretization of  (3. I 1 )-(3.12) and (3.13)-(3.14) we 
introduce Yh and Mh defined by 

Y,, = {C,, E C°(~)3; VTj, Q r,, Ch.K,, E P~} 

M2,, = {q_,,, E C°(~); VT2,, E r2,, q2h.X~ ~- P,}. 

For any G, E Yh we may write 

ton is recognized as the upper hybrid frequency and is actually 
very close to toh, and toLH is the lower hybrid frequency. 

We also note a cutoff occurs when n 2 = O. For the Darwin 
model this happens when 

9 " to2 = co~e + top2 + toe,to, ~ to;, + toc~to,. 

3 nh 

Ch(x) = 2 Z CiNi(x)u,,, 
a = l  i=1 

where (u~, u2, u3) are the three-dimensional basis vectors in 
R 3. The set (N'u~)t_~i%.~_~,,_~3 is a basis of yh. 

For any qzh E Mzh we may write 

Call this value totD. For the full Maxwell case cutoff occurs 
when 

n~ 

q2h = E q iMi(x)' 
i= l  
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where (M ' ) ,~ .~  is a basis of  M.,h. The set (M'),_<~_<...,, is defined 
on T2h in the same way that (N~)~<~_<°t, is defined on Th. 

We prefer not to put the essential boundary conditions B • 
n = 0 or E X n = 0 in the finite dimensional spaces but to 
use a projected conjugate gradient, as described in [16] to 
enforce them. A detailed discussion is given in Assous et al. [ 1 ]. 

We now write down our finite element formulation of (3. ! 1)-  
(3.12) and (3.13)-(3.14). The derivations are straightforward 
and are analogous to the one for the electrostatic potential. 

3 nt, n2h 

Bh(X, t) = ~] ~ Bi(t)Ni(x)u~ and p2h(X, t) = ~] pi(t)Mi(x) are 
a = l  i=1 i=1 

solutions of  

f o r l  <-- j <-- nh, 1 <-- fl <-- 3, 

3 'It, 

 z,f Esol~ V ' ( / ~ u ~ ) ' M  j d x = O  f o r l - - < j  <n~h. 
a = l  i=1 fl 

A P P E N D I X  C: M I X E D  F O R M U L A T I O N  VS 

S T R E A M L I N E D  D A R W I N  

As we have seen E~o~ is solution of the system 

V X V X E~o,- V@ = - )  

V • Eso, = 0. 

(f ~] B~, V x (N'u,)" V X (NJu0)dx 
a = l  i=l  fl  

+ f n V " (N~ua) V " (NJu~) dx)  

1 dB; ) 
+ c ~ fr ,  (/V/u" X n)" (NJu.~ X n) do" 

n~  

+ ~,  pi fn MiV" (NJut3) dx 
i=1 

3 n.~ 

: X X z fo ( uo) • v × 
a = l  i= l  

f o r l  <--j<--nh, I <--fl<- 3, 

3 nt, 

EEs: f  V.(N'.o).M, ax:O 
a = l  i= l  

for 1 -< j -< n2h. 

3 nh n2h 

Esolh(X, t) = -~ ~, E~ola(t)Ni(x)ua and ~ ( x ,  t) = ~ ~i(t)Mi(x) 
a = l  i=l  i=1 

are solutions of  

i (fnV Eso,,~ X (N/u,,) • V X (NJu~) dx 
a = l  i= l  

+ f V " (Niu~) V " (NJua) dx)  

ll2h 1 
f fl MiV " + (sJu,) dx 

3 nh 

: --l.t,oE E , ) i  f (Nilla).(NJu.)dx 
~=1 i= l  ct 1"1 

i?~ . & .= q MiNJuo n do. 

X n ) . ( u ~ X n ) d o .  

Having adequate boundary conditions, say for example Eso~ × 
n = 0 and ~ = 0 if the boundary is perfectly conducting, the 
variational theory enables us to show that there is a unique 
solution (E~oj, th), ~b being a by-product we do not actually 
compute. In this paper we describe a method allowing us to 
work directly on this formulation which we call a mixed formu- 
lation. Let us compare this method to the streamlined Darwin 
algorithm introduced by Hewett and Boyd [4] which reads: 
Compute the F and ~b solution of 

V2F _- j 

V2¢ = V" F 

and then Eso~ = F - V~b. E~o~ computed this way is identical 
to the first one; indeed, 

V x V x E~o, = V X V x F = -V2F  + VV • F. 

Hence 

V X V x E~o,- V(V~) = - J  

V • E~ol = 0 

and, thus, the variational theory tells us that the unique solution 
to this sys t em- -wi th  the same boundary conditions as pre- 
v i o u s l y - i s  (E~o,, V2~O). Therefore E~o~ computed with this algo- 
rithm is identical to the first one and, additionally, V2$ = ~. 

The streamlined Darwin formulation seems to have the ad- 
vantage of having two decoupled equations. However,  this is 
true only when J can be time differenced, which is not the 
case, as we have seen, in most Darwin applications. As for 
the boundary conditions, you can pick anything, for example, 
Dirichlet 0 for ~, and then the boundary conditions on F are 
given by those on E~o~. Hence the boundary conditions issue is 
identical for both algorithms. 

Hewett et al. [I I] have developed fast ADI-based methods 
for the streamlined formulation. These cannot be applied on 
unstructured meshes. However,  the mixed formulation using 
different functional spaces for the fields and the Lagrange multi- 
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pliers lead to sl ightly smal ler  p rob lems .  Moreover ,  E~o~ is ob-  

ta ined direct ly wi thout  having  to take the gradient  o f  a scalar 

potent ial  which  gives  greater  accuracy.  
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